Breaking of a Riemann wave in dispersive hydrodynamics

A. V. Gurevich
P. N. Lebedev Physics Institute, Academy of Sciences of the USSR, 117924, Moscow

A. L. Krylov
O. Yu. Schmidt Institute of Earth Physics, Academy of Sciences of the USSR, 123810, Moscow

G. A. Él'
Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, Academy of Sciences of the USSR, 142092, Troitsk, Moscow Oblast

(Submitted 18 June 1991)

A general method is developed for analytically solving Whitham’s modulation equations, which describe the structure of a dissipationless shock wave after an arbitrary monotonic profile breaks in a Korteweg–de Vries hydrodynamics.

1. A simple Riemann wave is described by the equation \(\partial_t r + V(r) \partial_x r = 0 \), which has the solution
\[
x - V(r) t = W(r),
\]
where the function \(W(r) \) is the inverse of the initial profile \(r = r_0(x) \). After a simple wave breaks in a Korteweg–de Vries hydrodynamics, the solution is described by the three functions \(r_1, r_2, r_3 \) (Fig. 1), which satisfy Whitham’s modulation equations
\[
\partial_t r_i + V_i(r) \partial_x r_i = 0.
\]
The characteristic velocities \(V_i(r) \) are given by explicit expressions, and \(r = (r_1, r_2, r_3) \) (Refs. 1–3).

A vector generalization of Riemann wave (1) for system (2) is
\[
x - V_i(r) t = W_i(r),
\]
but the function \(W_i(r) \) is not arbitrary. It must satisfy compatibility conditions found by substituting (3) into (2):
\[
\frac{\partial_i W_j}{W_i - W_j} = \frac{\partial_i V_j}{V_i - V_j}, \quad i \neq j, \quad \partial_i \equiv \partial_{r_i}
\]
[the construction in (3), (4) is known as the generalized hodograph method\(^{3,4}\)]. We would also obtain Eqs. (4) if we analyzed the system of equations
\[
\partial_t r_i + W_i(r) \partial_x r_i = 0,
\]
which specifies the flux \(r_i(\tau) \) which commutes with the solution of (2), i.e., the flux \(r_i(t) \). In other words, the general solution of compatibility equations (4) in \(r \) space describes all the \(r \) fluxes which commute with \(r(t) \) from (2) (Ref. 3).
2. As a result of Eqs. (2), the number of waves is conserved:

\[\partial_t k + \partial_x (kU) = 0, \] (6)

where \(k \) is the wave number, and \(U \) is the phase velocity. In the Korteweg–de Vries case we would have

\[U = \frac{1}{3} \sum_{j=1}^{3} r_j, \quad \lambda = \frac{2\pi}{k} = 6^{1/2} \int_{r_1}^{r_2} d\mu \left[\prod_{j=1}^{3} (\mu - r_j) \right]^{-1/2} = \frac{6^{1/2} K(m)}{(r_3 - r_1)^{1/2}}. \] (7)

Here \(K(m) \) is the complete elliptic integral of the first kind, and \(m = (r_2 - r_1)/(r_3 - r_1) \).\n
Going over to the Riemann variables \(r_j \) in (6), we obtain a “potential” representation for the characteristic velocities:

\[V_i(r) = U + k \partial_i U / \partial_x k = U - \lambda \partial_i U / \partial_x \lambda. \] (8)

Let us consider the following equation, which commutes with (6):

\[\partial_t k + \partial_x (kf) = 0, \] (9)

where \(f \) is a generalized phase velocity [certain equations of the type in (9) have the natural meaning of conservation laws for the number of waves for higher-order Korteweg–de Vries situations]. By analogy with (8) we find the following expression for \(W_i \) in terms of the (scalar) function \(f \):

\[W_i = f - \lambda \partial_i f / \partial_x \lambda = f + (V_i - U) \partial_i f / \partial_x U. \] (10)

Substituting (8) and (10) into Eqs. (4), we find a scalar formulation of the compatibility equations:

\[\frac{\partial_i^2 f}{\partial_i f - \partial_j f} \frac{\partial_k^2 \lambda}{\partial_i \lambda - \partial_j \lambda}, \quad i \neq j. \] (11)
Using (7), we finally find
\[
\frac{\partial_{ij}^2 f}{\partial_i f - \partial_j f} = \frac{1}{2(r_i - r_j)}
\]
or
\[
E_{ij} f = 0, \quad \text{where} \quad E_{ij} = \partial_{ij}^2 - (\partial_i - \partial_j)/2(r_i - r_j).
\] (12)

Equations (12) were derived by a different method in Ref. 5. Each of these equations, for a given pair, \(i, j\), is an Euler–Poisson equation in \(r_i, r_j\) at a fixed \(r_k = r_k0\) \((k \neq i, j)\). Of importance to the discussion below are the homogeneous solutions of (12) of the form \(f = r^q \Phi (-q, 1/2; 1/2 - q; r_j/r_j)\), where \(q\) is an arbitrary number (not necessarily an integer), and \(\Phi(a, b; c; z)\) is the solution of the corresponding hypergeometric equation. 6

3. Let us examine the problem of the breaking of simple wave (1) with a monotonic initial profile in a dispersive Korteweg–de Vries hydrodynamics. We assume that the breaking begins at \(t = 0\) at the point \(x = 0, r = 0\) (Fig. 1), where
\[
r(x, 0) = \begin{cases}
 r_0^+(x) < 0 & \text{for } x \geq 0, \\
 r_0^-(x) > 0 & \text{for } x < 0;
\end{cases} \quad W(r) = \begin{cases}
 W_+(r) & \text{for } r \leq 0, \\
 W_-(r) & \text{for } r > 0.
\end{cases} \quad (13)
\]
The solution which we need describes the evolution of the dissipationless shock wave, which lies between the boundaries \(x = x^- (t)\) (the trailing edge) and \(x = x^+ (t)\) (the leading edge). This solution satisfies certain conditions on the curves of \(x^\pm (t)\). These conditions are that the “external” solution in (1), \(r(x,t)\), join with the solution \((r_1, r_2, r_3)\) of the “internal” modulation equations, (2) (Ref. 2):
\[
r_3(x^-, t) = r_-(x^-, t) \quad \text{for } r_2 = r_1; \quad r_1(x^+, t) = r_+(x^+, t) \quad \text{for } r_2 = r_3. \quad (14)
\]

Interestingly, when we go over to \(r\) space, conditions (14) take the simple form
\[
W_1 = W_+(r_1) \quad \text{for } r_2 = r_3; \quad W_3 = W_-(r_3) \quad \text{for } r_2 = r_1. \quad (15)
\]

As a result, instead of a problem with conditions at an unknown boundary, (14), in \(r\) space, linear system (4) satisfies simple linear conditions at given boundaries. 7 Switching to the scalar function \(f\), and using (10) with \(r_2 = 0\), we find the boundary conditions
\[
f = f_-(r_3) = \frac{1}{2} r_3^{-1/2} \int_0^{r_3} x^{-1/2} W_-(x) dx \quad \text{for } r_1 = r_2 = 0, \quad (16)
\]
\[
f = f_+(r_1) = \frac{1}{2} (-r_1)^{-1/2} \int_0^{-r_1} x^{-1/2} W_+(x) dx \quad \text{for } r_3 = r_2 = 0.
\]
The satisfaction of conditions (16) on the \(r_2 = 0\) plane implies the satisfaction of (15) (for the regular solution). Combining Eqs. (4), we easily find the result
\[\partial_t W_1 = (\partial_2 + \partial_3) W_1 / r_2 = r_2 \] for arbitrary \(r_1 \). In other words, the function \(W_1 \) is constant along the leading edge (and corresponding comments apply to \(W_3 \) and the trailing edge).

For \(f(r_1, r_2, r_3) \) we thus have system of equations (12) in the region \(r_1 \leq r_2 \leq r_3, r_1 < 0, r_3 > 0 \) between the \(r_2 = r_1 \) and \(r_2 = r_3 \) planes (Fig. 2), with boundary conditions (16). Let us construct a solution for this problem.

We first find \(f(r_1, 0, r_3) \) from Goursat problem (12), (16):

\[E_{31} f = 0, \quad f|_{r_1=0} = f-(r_3), \quad f|_{r_3=0} = f+(r_1). \] (17)

Since problem (17) is linear, it is sufficient to solve it for the case (for example) \(f_+(r_1) = 0 \). From the representation of \(f-(r_3) \) as a Mellin integral,

\[f-(r_3) = \frac{1}{2\pi i} \int_{c-iz}^{c+iz} r_3^q S(q) dq, \quad S(q) = \int_0^\infty r_3^{-q-1} f-(r_3) dr_3, \]

it is clear that we can restrict the analysis to \(f^{(q)}(r_3) = r_3^q \). A solution of this problem can be written out explicitly:

\[f^{(q)}(r_1, r_3) = r_3^q \left[\frac{\Gamma(q+1)}{\Gamma(q+1/2)} \right]^{1/2} \frac{1}{q+1/2} u_4(r_1/r_3), \] (18)

where \(u_4(z) = z^{-1/2} F(q + 1, 1/2; q + 3/2; z^{-1}) \) is the corresponding Kummer solution of the hypergeometric equation with the parameters \((-q, 1/2; 1/2 - q) \), and \(F(a, b; c; z) \) is the Gauss hypergeometric function.

The solution found, \(f(r_1, 0, r_3) \), can then be thought of as a condition (of the Goursat type) for corresponding boundary-value problems in the \(r_1 = \text{const}, r_2 > 0 \)
and \(r_3 = \text{const}, \ r_2 > 0 \) planes (Fig. 3). In planes with \(r_1 = \text{const} \), for example, we have the following problem \((r_1 \text{ appears as a parameter; } r_2 > 0) \): We have \(E_{3} f^{*}(r_2, r_3) = 0 \), \(f^{*}(r_1, 0, r_3) = f^{*}(q)(r_1, r_3) \) [see (18)], and \(f^{*}(r_1, r_2, r_3) \) is regular at \(r_2 = r_3 \). By virtue of the linearity of the problem, it is again convenient to write \(f^{*}(q)(r_1, r_3) \) as a Mellin integral (or as a power series in \(r_3 \)). The solution for each term has form like that of (18), with \(u_4(z) \) replaced by \(u_5(z) \), which is regular at the leading edge \((z = 1) \). A solution is found in the planes \(r_3 = \text{const}, \ r_2 < 0 \) in a corresponding way. The solution is thus constructed on the two sides of the \(r_2 = 0 \) plane, at which the function \(f \) is given. The continuity of the normal derivative \(\partial f / \partial t \) at \(r_2 = 0 \) can be checked directly (cf. Ref. 2). The \(x^\pm (t) \) curves, which bound the region of the dissipationless shock wave, are found through a joint analysis of solution (3) and the conditions \(dx^\pm / dt = V^\pm \) at the boundaries \((V^\pm \) are multiple characteristic velocities).²

4. Examples. It is clear from the discussion above that, without any loss of generality, it is sufficient to analyze the breaking problem with initial data (13), where

\[
\begin{align*}
 r_0^-(x) &= (-x)^{1/q_-}, \quad r_0^+(x) = -x^{1/q_+}; \quad W_-(r) = -r^{q_-}, \quad W_+(r) = (-r)^{q_+}, \quad q_\pm > 1.
\end{align*}
\]

With \(q_+ = q_- = q \), the solutions \(r_i(x, t) \) which we need are self-similar:\(2,3 \) \(r_i = t^\gamma \int_i(x/t^{\gamma+1}), \) where \(\gamma = 1/(q - 1) \).

a) A quasisimple wave \(r = (0, r_2, r_3) \). We ultimately find a family of solutions with \(r_1 = 0 \), which were discussed in Ref. 7. A wave of this sort is described by the equation \(E_{3} f^{*}(r_2, r_3) = 0 \) with given \(f(0, r_3) = -r^{q}/(2q + 1) \), corresponding to a breaking of a monotonic profile \(R_0^-(x) = (-x)^{1/2}, \ R_0^+(x) = 0. \) The solution which we need, and which is regular on the bisector \(r_2 = r_3 \), is \(f(r) = -r^{q/2} \Gamma(1 + q)u_5(r_2/r_3)/2\Gamma(q + 3/2) \). For integer values \(q = M \), the hypergeometric series is truncated, and the solution takes the symmetric form

\[
f(r) = P_M(r_2, r_3) = -\frac{2^M M!}{(2M - 1)!!(2M + 1)} \sum_{k_2 + k_3 = M} \frac{(1/2)k_2 (1/2)k_3 r_2^{k_2} r_3^{k_3}}{k_2! k_3!},
\]

\((a)_n = \Gamma(a + n)/\Gamma(a) \).
b) Breaking of an antisymmetric profile \(r = (r_1, r_2, r_3) \). We assume \(q = M \) (an integer). Then for odd values of \(M \) we have

\[
f(r) = P_M(r) = -\frac{2^M M!}{(2M - 1)!!(2M + 1)} \sum_{k_1 + k_2 + k_3 = M} \frac{(\frac{1}{2})_{k_1} (\frac{1}{2})_{k_2} (\frac{1}{2})_{k_3}}{k_1!k_2!k_3!} r_1^{k_1} r_2^{k_2} r_3^{k_3},
\]

and for even values of \(M \) we have

\[
f(r) = \begin{cases}
- P_M(r) + I(-r_1, -r_2, r_3) & \text{for } r_2 < 0 \\
 P_M(r) - I(r_3, r_2, -r_1) & \text{for } r_2 > 0.
\end{cases}
\]

Although an explicit integral representation of \(I(r) \) is known, it is lengthy, and we will not reproduce it here. For even integer values of \(q \), the solution is thus not a polynomial solution. As we mentioned earlier, the derivative \(\partial_f(r_2 = 0) \) is continuous. Nevertheless, the \(r_2 = 0 \) plane is obviously singular. This result is not surprising: An initial profile with even \(q \) is not an analytic function, and it cannot be found as a result of the evolution of a smooth profile of a Riemann wave. Only a profile with odd values of \(q \), for which solution (20) is of a polynomial nature and has no singularities, satisfies the evolution properties.

5V. R. Kudashev and S. E. Sharapov, Preprint IAÉ-5221/6, I. V. Kurchatov Institute of Atomic Energy, Moscow, 1990.

Translated by D. Parsons